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Ising spin glass that closely resembles the physical glass transition

Marc L. Mansfield
Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030

~Received 17 September 2001; published 2 July 2002!

We consider a modification of the one-dimensional Ising model in an external field in which the higher-
energy spin state is assumed to beP-fold degenerate. The model shows a transition that becomes first order in
the limit of infinite coupling constant. Here we report a study of the dynamical properties of the model by
computer simulation in the vicinity of this transition, under the assumption that the model evolves by single
spin flips with Metropolis bias, but with certain forbidden flips. The result is a model that exhibits many
well-known empirical properties of the physical glass transition, including the ‘‘Kauzmann paradox,’’ the Vogel
law, stretched-exponential relaxation, and dynamic heterogeneity.

DOI: 10.1103/PhysRevE.66.016101 PACS number~s!: 05.50.1q
ic
o
t

low
r

lik
lin
o
in

ne
so
in
d-
e

e-
of
at
te
rd
ss
av
e
m
on

er
t

ha

ac
n
o
in
n
-

e
a

tem

than

e of
n,
ity

otal
-
-

f

he

t of
m-

m-
I. INTRODUCTION

Empirical evidence for spatially heterogeneous dynam
in supercooled liquids is now available from a number
laboratories. The glass transition seems to be related to
coexistence of two types of small domains with fast and s
dynamics, respectively. The domains themselves appea
be dynamic, shifting their structure over time@1–4#. There is
also modeling evidence that these domains are string
@5,6#. Mean-field treatments, such as the mode-coup
model @7#, are unable to provide a complete description
this heterogeneity. I present here a one-dimensional Is
model that is simple enough that results can be obtai
without resorting to mean-field approximations. But it al
displays many empirical properties of physical glasses,
cluding the ‘‘Kauzmann paradox,’’ the Vogel law, stretche
exponential relaxation, and the dynamic heterogeneity m
tioned above. It is formally equivalent to the on
dimensional Ising model in an external field, which,
course, means that its equilibrium properties can be tre
rigorously, while its dynamical properties can be simula
with considerable ease. The model also displays a first-o
phase transition in one limit, although the interesting gla
properties are not observed in this limit. Other authors h
discussed glassy Potts models, but typically in mean-fi
approximation@8#, and have also suggested that ‘‘rando
first order’’ transitions underlie the physical glass transiti
@9#.

Formally, we will assume that there areP11 spin states,
which might be labeled 0, 11 , 12 ,..., 1P . However, theP
states 11 , 12 ,..., 1P are assumed to be completely degen
ate, and we define a composite state, 1, so that effectively
model has only two states, 0 and 1. A spin in state 1
equal probability of being in any of the states 11 , 12 ,..., 1P .
s j50 or 1 represents the spin state of spinj. Spins in states
0 and 1 contribute energies of 0 and 1, respectively. E
nearest-neighbor pair of spins contributes energy 0 whe
the same state, andm when in different states. We refer t
sequences of 1-spins as clusters, and sequences of 0-sp
gaps, with the chain consisting of alternating clusters a
gaps. The coupling constantm is therefore the boundary en
ergy between clusters and gaps. For reasons to becom
vious in Sec. III, we exclude from the ensemble the chain
1063-651X/2002/66~1!/016101~6!/$20.00 66 0161
s
f
he

to

e
g
f
g
d

-

n-

ed
d
er
y
e

ld

-
he
s

h
in

s as
d

ob-
ll

of whose spins are 0. Therefore, all states of the sys
contain at least one cluster.

Since 1-spins have higher energy and degeneracy
0-spins, there exists a temperature,T051/ln P, such that the
system prefers either 0- or 1-spins depending on the valu
T relative toT0 . Ordinarily, and especially in one dimensio
we do not expect to see strong nonlinearities in the vicin
of T0 . However, by assigning a large value tom, we are able
to introduce a bias towards long-range order since the t
number of boundaries will diminish if like spins group to
gether. Indeed, whenm is large, strong nonlinearities at tem
peratures nearT0 are observed.

II. EQUILIBRIUM PROPERTIES

The following transfer matrix controls the equilibrium
properties of this model:

T5F1 Pxy

y Px G , ~1!

where

xexp~21/T!, y5exp~2m/T! ~2!

and whereT represents temperature. The eigenvalues oT
are

r 65221$11Px6@~12Px!214Pxy2#1/2%. ~3!

The partition function is given rigorously by

Z5tr~TN!215r 1
N 1r 2

N 21. ~4!

The subtraction of unity removes the contribution of t
chain of all 0’s. Sincer 1.r 2 always, andr 1.1 at all T
.0, the approximationZ5r 1

N is valid at all temperatures
except withinO(1/lnN) of absolute zero. Specifically, it is
only at such extremely low temperatures that the neglec
the all-0 chain becomes significant. Table I displays a nu
ber of equilibrium properties.

Note that as y→0, r 1→max(1,Px) while r 2

→min(1,Px). Therefore, in the smally limit, we observe a
slope discontinuity in the free energy as a function of te
©2002 The American Physical Society01-1
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TABLE I. Equilibrium properties of the model. The following properties can all be derived from
transfer matrix.T8 is the matrix whose second column equals the second column ofT, but whose first column
contains zeros.

Property Value in thermodynamic limit

The partition functionZ r 1
N

Free energy per spinA 2T ln r1

Probability that an arbitrary spin is in state 1P1 (x/r 1) (]r 1 /]x)
Cluster densityPc (y/2r 1) (]r 1 /]y)
Total energy per spinE P112mPc

Spatial spin correlationŝs(0)s( j )& Z21tr@(T8,T j 21,T8,TN2 j 21#

Correlation function:
S( j )5$^s(0)s( j )&2^s&2%/$^s2&2^s&2%

(r 2 /r 1) j 21, neglecting front factor

Spatial correlation lengthG @ ln r12ln r2#21

Average gap lengthG (12P1)/Pc

Average cluster lengthC P1 /Pc

Gap length distribution~unnormalized! gj (1/r 1) j , j 50,1,2,...
Cluster length distribution~unnormalized! cj (Px/r 1) j , j 50,1,2,...
t
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perature and the system displays a first-order phase transi
at the temperatureT05(ln P)21. There is, of course, a well-
known proscription against first-order phase transitions
one-dimensional systems, but since this system only displ
the transition in the limity→0, there is no violation of the
theorem. Nevertheless, wheny is near but distinct from 0, the
transition is abrupt but not discontinuous. Figures 1–3 d
play the temperature dependence of the populations
1-spins and clusters, of the energy and entropy, and of
heat capacity,]E/]T, calculated withm55 and P52, for
which T0'1.44.

FIG. 1. Densities of 1-spins (P1) and of clusters (Pc). The scale
for Pc is expanded 40-fold relative to that forP1 . Symbols are
simulation results; curves are calculated according to formulas
Table I. In this and all subsequent figures, energy units are such
the energy difference between 0- and 1-spins is 1 and tempera
units are such that Boltzmann’s constant is 1.
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We recover the standard Ising model by settingP51,
which shifts the transition temperature toT05`. However,
in the limit of infinite temperature,y as defined approaches 1,
and the transition would not be observed. Therefore, to se
the transition whenP51, we would need to make the cou-
pling constant proportional toT. Then it would occur at the
zero of reciprocal temperature, at the switch from large pos
tive to large negative temperatures.

The spatial correlationŝs(0)s( j )& are the probabilities
that spins 0 andj are simultaneously in state 1. The differ-
ence ^s(0)s( j )&2^s&2 proves to be proportional to
(r 2 /r 1) j5exp(2j/G), for the correlation lengthG defined as

in
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FIG. 2. Energy and entropy per spin as functions of temperatur
1-2
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ISING SPIN GLASS THAT CLOSELY RESEMBLES THE . . . PHYSICAL REVIEW E 66, 016101 ~2002!
in Table I. NearT0 , G is '1/(2y), so that with strong cou-
pling, correlations become long-ranged. This heterogen
is, in part, responsible for glassy behavior, as we shall s

The average lengths of gaps and clusters are show
Fig. 4. Gaps and clusters dominate, respectively, at low
high temperatures. Also, as observed in Table I, clusters
gaps have Poisson length distributions.

III. DYNAMICAL PROPERTIES

We consider the dynamics of the model in discrete ti
with Metropolis sampling. The fundamental dynamical pr
cess is single-spin flipping, but certain transition
...000...↔...010... and ...100...↔...110... are forbidden. The
first constraint prevents the spontaneous appearance or
appearance of an isolated 1-spin; in other words, a cluste
length one. The second constraint prevents movement o
right boundary of a cluster. Table II summarizes the dyna
cal process. Although the right boundary of any given clus
is pinned, the left boundary moves via the proce
...001...↔...011... . Furthermore, clusters are created and
stroyed by the division or the union of existing clusters v
the process ...101...↔...111... .

Obviously, any possible arrangement of clusters and g
can be generated from any other arrangement: We permi
left boundary of all clusters to move through repetitions
the process ...001...→...011... until all gaps have length 1
then fill these gaps through the process ...101...→...111... .
We can then work in reverse to generate any new config
tion. The only inaccessible state is the chain of all 0’s. So
rigorously satisfy ergodicity, we exclude this state from t
ensemble. As mentioned above, in the thermodynamic l
this omission is only significant in a vanishingly small inte
val near absolute zero.

As a result of the process ...001...↔...011..., the left edge

FIG. 3. Heat capacity per spin as a function of temperature
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of any given cluster performs a biased random walk, w
steps to the left and right occurring with relative weightsPx
and 1, respectively. At temperaturesT.T0 , the bias is to-
ward the left (Px.1), the gaps are narrow and tend
shrink spontaneously so that the clusters have relatively s
lifetimes; and we need not wait long to see any given clus
quenched by a cluster to its right. At temperaturesT,T0 ,
the bias is towards the right (Px,1), the gaps have a broa
Poisson length distribution, and any given cluster can hav
very long lifetime as we wait for the cluster at its right
grow and quench it. Cluster lifetimes are distributed broa
and increase on average with falling temperature. This

FIG. 4. Mean lengths of clusters and gaps. Symbols are sim
tion results; curves are calculated according to formulas in Tab
Lengths are measured relative to the lattice spacing of the mod

TABLE II. The model evolves dynamically via single spin flip
with Metropolis bias, but with certain forbidden flips. A single sp
s j is selected at random. The second column gives the probab
with which s j flips and is a function of the spin states of the tw
neighboring spins. The system clock then advances by the am
1/N, for N the total number of spins. HereQ5(P11)21. ~These
transition probabilities are only valid whenm.0.5.!

Initial configuration
...s j 21 s j s j 11 ... Transition probability

... 0 0 0 ... 0

... 0 1 0 ... 0

... 1 0 0 ... 0

... 1 1 0 ... 0

... 0 0 1 ... QPx

... 0 1 1 ... Q

... 1 0 1 ... QP

... 1 1 1 ... Qy2/x
1-3
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MARC L. MANSFIELD PHYSICAL REVIEW E 66, 016101 ~2002!
plains the glassy behavior of the system.
We define variablest j such thatt j51 if and only if s j

51 ands j 1150; in all other casest j50. Thet j ’s label the
right edges of all the clusters, and are convenient dynam
markers for the clusters: The period of time over which
spin hast state of 1 is precisely the life-span of the asso
ated cluster.

We consider two correlation functions:

Ut~ t !5$^t j~0!t j~ t !&2^t j&
2%/$^t j

2&2^t j&
2%, ~5!

Us~ t !5$^s j~0!s j~ t !&2^s j&
2%/$^s j

2&2^s j&
2%, ~6!

wheret j (0), t j (t), s j (0), ands j (t) are the values oft j and
s j at times 0 andt, respectively. We have estimated the
correlation functions by computer simulation. A number
trajectories, each of length 106 time steps, were generated
a series of temperatures, using the valuesP52, m55, and
N51000. With P52, we haveT0'1.44. For simple spin
systems such as these, an initial random configuration ca
obtained easily from the transfer matrix using Meirovich
scanning technique@10#, which is rigorous as long as the fu
system is scanned. Therefore, annealing to achieve equ
rium is not necessary.Us(t) and Ut(t) were calculated by
direct sampling along each trajectory at a series oft values
with approximately uniform logarithmic spacing and at a s
ries of different temperatures. The values obtained at e
temperature were then fitted to the stretched-exponentia
laxation function

exp@2~ t/tR!b# ~7!

FIG. 5. Simulation data for the time correlation functionUt(t)
over a range of temperatures betweenT51.3 andT52. Symbols
are the simulation data; solid curves are the best-fit stretch
exponential functions. Time units in this and subsequent figures
such thatN attempted spin-flips represent one unit of time.
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by linear regression of ln@2ln Ux(t)# vs lnt ~but using only
those values for which 0.1,Ux(t),0.9!. Figures 5 and 6
display the two relaxation functions at a series of tempe
tures. The stretched-exponential function provides a goo
for both Ut andUs at high temperatures, but only ofUt at
all temperatures.Ut probes the lifetime of individual clus
ters, its relaxation time,tRt , can be construed as the clust
lifetime. Us , on the other hand, probes the flipping motio
of individual spins, and at low temperatures two separ
relaxations become resolvable. The faster relaxation ar
from the fluctuating motion of individual clusters as the
grow and shrink, while the slower relaxation arises from t
creation and annihilation of clusters. This faster relaxation
suggestive of thea relaxation in real liquids. Interestingly
the separation into two time scales appears at the temper
T0 . Further study of theUs function is obviously needed
while for now we examine onlyUt . Figures 7 and 8 display
the temperature dependence of the stretched-exponentia
rameterstRt andbt characterizingUt . The parametertRt ,
representing the cluster lifetime, varies with temperature
cording to the empirical Vogel law,

tRt5A exp@B/~T2TV!# ~8!

with A54.63, B51.74, and TV51.165. The stretched
exponential indexbt decreases slowly with decreasingT at
temperaturesT.T0 , and much more rapidly as we pass b
low T5T0 . The relaxations of many physical phenome
are well represented by the stretched-exponential funct
with relaxation times following the Vogel law. Furthermoreb
is usually observed to decrease with decreasing tempera
In fact, examples are known in which the rate of decrease

d-
re

FIG. 6. Simulation data for the time correlation functionUs(t)
over a range of temperatures betweenT51.3 andT52. Symbols
are the simulation data; solid curves are the best-fit stretch
exponential functions.
1-4
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ISING SPIN GLASS THAT CLOSELY RESEMBLES THE . . . PHYSICAL REVIEW E 66, 016101 ~2002!
b changes dramatically in qualitative agreement with Fig
@11#. We note that the glass transition temperature, define
the point at which the Vogel law appears to diverge, isTV
'1.16, substantially lower than the transition temperat
T0'1.44.

At T51.3, the relaxation time exceeds 106, and this tem-
perature proves to be the practical limit of simulation.
many trajectories as needed were run to bring the samp
error in Ut and Us within acceptable bounds, but this re
quires many more trajectories at lower temperatures.~At T
51.3, about 1000 independent trajectories were nee
about 400 at each of the temperatures 1.31 and 1.32; 1
300 when 1.35<T<1.44; and 20–50 when 1.44,T.!

IV. DISCUSSION AND CONCLUSIONS

This model reproduces all of the following empiric
properties of glass-forming liquids:~1! The energy and en
tropy fall off rapidly upon cooling~see Fig. 2!, in agreement
with the behavior often referred to as the Kauzmann parad
~2! The temperature dependence of the relaxation time
lows the Vogel law.~3! The spectrum of relaxation time
broadens upon cooling in agreement with the stretch
exponential law.~4! Spatially heterogeneous dynamics, i.
coexisting domains of, respectively, fast and slow relaxati
present at equilibrium and which constantly move about,
observed. A fifth property, two separate time scales at
temperatures, displayed in theUs correlation function and
suggestive of the empiricala relaxation, can also be cited
but further study of the temperature dependence of these
time scales is needed.

It might be argued that the empirical heat capacities

FIG. 7. Relaxation timetRt as a function of temperature. Sym
bols are the simulation data; solid curve displays the best-fit Vo
function. The vertical dashed line gives the value of the Vogel te
perature.
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not exhibit the strong peaks displayed in Fig. 3. However
should be remembered that the glass transition is a confi
rational effect. This model is construed only to represent
configurational contribution to the heat capacity. We can
pect any such peaks in real systems to be significa
washed out by vibrational contributions. Furthermore,
fact that the system eventually leaves equilibrium upon co
ing means that the measured heat capacity will not exhib
peak as strong as that shown in Fig. 3.

Let us summarize the features of the model that lead
glassy behavior. First, a relatively large coupling const
promotes inhomogeneity. Second, because the clusters
higher spin entropies than the gaps~ln P vs 0!, the tempera-
tureT051/ln P marks a transition from cluster dominance
gap dominance. The combination of these two effects p
duces highly nonlinear behavior nearT0 . And third, the two
dynamical constraints, suppression of spontaneous clu
creation and annihilation and the pinning of clusters by
permitting their right boundaries to move, produce glas
dynamics, since cluster quenching can only occur when
clusters merge. The process of cluster formation and dest
tion spreads out over a broad range of times because the
distribution is broad.

One question concerns the generalization of this mode
higher dimensions, since higher-dimensional Ising mod
display richer phase behavior. However, the relevant tra
tion occurs at infinite temperature in the standard model,
would seemingly be unaffected by, for example, the Is
critical point. We are currently studying the behavior of th
model in higher dimensions.

Assuming that some generalization of this model can
applied in higher dimensions, we can then ask what
model teaches us about supercooled liquids. The model

el
-

FIG. 8. Stretched-exponential indexbt as a function of tem-
perature.
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MARC L. MANSFIELD PHYSICAL REVIEW E 66, 016101 ~2002!
gests several assumptions about real liquids, which we
cuss in the following.

~1! Supercooled liquids possess two separate ‘‘phase
This model suggests that supercooled liquids exhibit t
separate equilibrium ‘‘phases’’; an ‘‘ideal’’ liquid and a
‘‘ideal’’ glass phase, analogous, respectively, to the clus
and gaps of the model. We enclose the term ‘‘phases’
quotes because they are not true macroscopic phases; clu
and gaps have a finite average size and at macroscopic le
scales the system is uniform. In liquids, the two phases
parently are structurally similar, both being disordered pa
ings, although the ideal glass is less energetic and less
generate than the liquid. The clusters represent region
high internal mobility, since each 1-spin is actually in one
P different degenerate states.

~2! Liquid domains at their minimum size have relative
low entropy but high energy. The smallest cluster is a singl
1-spin, and has entropy lnP.0 and energy 2m@1. The
model therefore suggests that in real liquids, for whate
reason, the smallest liquid domains have high energies
low entropies, in the sense that their energies and entro
are much larger than and comparable to, respectively,
which would be expected based solely on the bulk ene
and entropy, respectively, of the phase.

~3! Ideal liquid and ideal glass domains may grow an
shrink at the expense of one another, but liquid doma
cannot spontaneously disappear; they must be quenche
another domain. The dynamics of the model has been co
strained to forbid a cluster from spontaneously disappear
In order to quench a liquid domain, another domain m
grow and coalesce with it. At low temperatures, this is a r
occurrence, since the equilibrium concentration of doma
is small. This also produces a broad spectrum of quench
times for liquid domains, since the gaps between doma
obey a Poisson distribution. Therefore, this assumption
le
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what gives rise both to the stretched-exponential relaxa
and to the Vogel temperature dependence.

It is obviously too early to insist that this model represe
the actual behavior of real liquids. It may be that the mo
captures all the essential phase space properties of true
uids without insisting that real liquids satisfy the three co
ditions listed above. A better understanding of the effect
dimensionality, as previously mentioned, will probably be
on this question. In any case, additional work is needed
understand exactly the relationship between this model
actual liquids.

For many supercooled liquids, the temperaturesTV @in Eq.
~8!# and TK ~the temperature at which the extrapolated e
tropy, Fig. 2, appears to vanish! are nearly the same. For th
model presented here, they are, respectively, 1.16 and a
1.3. Neither the reasons for nor the significance of this d
ference is understood at present.

Another area of study is the effect of the degeneracy te
P on the model. In this work we have only studied the d
namics of the model givenP52. As suggested by a refere
changes inP might change the fragility of the system.

Additional work is also needed to understand the relati
ship between this model and other models of glassy beh
ior, most notably, mode-coupling theory@7#. One feature of
mode-coupling theory is the ‘‘crossover temperature,’’Tc ,
considerably above the empirical glass transition tempe
ture, which marks a transition from normal liquid to glas
behavior. The temperatureT0 plays a very similar role in the
current model.
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