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Ising spin glass that closely resembles the physical glass transition
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We consider a modification of the one-dimensional Ising model in an external field in which the higher-
energy spin state is assumed tom#ld degenerate. The model shows a transition that becomes first order in
the limit of infinite coupling constant. Here we report a study of the dynamical properties of the model by
computer simulation in the vicinity of this transition, under the assumption that the model evolves by single
spin flips with Metropolis bias, but with certain forbidden flips. The result is a model that exhibits many
well-known empirical properties of the physical glass transition, including the “Kauzmann paradox,” the Vogel
law, stretched-exponential relaxation, and dynamic heterogeneity.
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I. INTRODUCTION of whose spins are 0. Therefore, all states of the system
contain at least one cluster.

Empirical evidence for spatially heterogeneous dynamics Since 1-spins have higher energy and degeneracy than
in supercooled liquids is now available from a number of0-spins, there exists a temperatufg=1/In P, such that the
laboratories. The glass transition seems to be related to treystem prefers either O- or 1-spins depending on the value of
coexistence of two types of small domains with fast and slow relative toT,. Ordinarily, and especially in one dimension,
dynamics, respectively. The domains themselves appear we do not expect to see strong nonlinearities in the vicinity
be dynamic, shifting their structure over tirffte-4]. Thereis  of To. However, by assigning a large valuertpwe are able
also modeling evidence that these domains are stringlikéo introduce a bias towards long-range order since the total
[5,6]. Mean-field treatments, such as the mode-couplingiumber of boundaries will diminish if like spins group to-
model[7], are unable to provide a complete description ofgether. Indeed, whem is large, strong nonlinearities at tem-
this heterogeneity. | present here a one-dimensional Isingeratures neaf, are observed.
model that is simple enough that results can be obtained
without resorting to mean-field approximations. But it also Il. EQUILIBRIUM PROPERTIES
displays many empirical properties of physical glasses, in- . . o
cluding the “Kauzmann paradox,” the Vogel law, stretched- The .foIIowm_g transfer matrix controls the equilibrium
exponential relaxation, and the dynamic heterogeneity merRroperties of this model:

tioned above. It is formally equivalent to the one- 1 Px

dimensional Ising model in an external field, which, of :[ y 1)
course, means that its equilibrium properties can be treated y Px]

rigorously, while its dynamical properties can be simulated

with considerable ease. The model also displays a first-orde¥here

phase transition in one limit, although the interesting glassy xexg — 1/T),  y=exp—m/T) @)

properties are not observed in this limit. Other authors have

discussed glassy Potts models, but typically in mean-fiel%1

approximation[8], and have also suggested that “random

first order” transitions underlie the physical glass transition

[9]. _ _ r.=2"Y1+Px+[(1-Px)2+4Pxy’]¥3. (3
Formally, we will assume that there aPet-1 spin states,

which might be labeled 0,1 1,,..., 1. However, theP  The partition function is given rigorously by

nd whereT represents temperature. The eigenvalued of

states 1, 1,,..., 1p are assumed to be completely degener-

ate, and we define a composite state, 1, so that effectively the Z=tr(TN)—1= rﬂ +rN—1. 4
model has only two states, 0 and 1. A spin in state 1 has

equal probability of being in any of the stateg, 1L,,..., 1p. The subtraction of unity removes the contribution of the

o;=0 or 1 represents the spin state of spiSpins in states chain of all 0's. Sincer,>r _ always, andr . >1 at all T

0 and 1 contribute energies of 0 and 1, respectively. Eack 0, the approximatiorZ=r" is valid at all temperatures
nearest-neighbor pair of spins contributes energy 0 when iexcept withinO(1/InN) of absolute zero. Specifically, it is
the same state, and when in different states. We refer to only at such extremely low temperatures that the neglect of
sequences of 1-spins as clusters, and sequences of 0-spindfas all-0 chain becomes significant. Table | displays a hum-
gaps, with the chain consisting of alternating clusters andber of equilibrium properties.

gaps. The coupling constantis therefore the boundary en- Note that as y—O0, r,—max(1Px) while r_
ergy between clusters and gaps. For reasons to become ob-min(1,Px). Therefore, in the smal limit, we observe a
vious in Sec. I, we exclude from the ensemble the chain alklope discontinuity in the free energy as a function of tem-
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TABLE |. Equilibrium properties of the model. The following properties can all be derived from the
transfer matrixT' is the matrix whose second column equals the second colufnkaft whose first column

contains zeros.

Property

Value in thermodynamic limit

The partition functionZ

Free energy per spiA

Probability that an arbitrary spin is in stateP}

Cluster densityP,

Total energy per spilk

Spatial spin correlationso(0)o(j))

Correlation function:
S(5)={(a(0)o(i)) — (o)} H{(0?) —(0)?}

Spatial correlation lengti'

Average gap lengti®

Average cluster lengtl®

Gap length distributiorfunnormalized g;

Cluster length distributiorunnormalizedl c;

rh
—Tinr,
(xIry) (ar 4 19x)
(y/2r) (ar.1dy)
P,+2mP,
Z7 (T, T T, TN
(r_/r;)i71, neglecting front factor

[Inr,—Inr_]*
(1-Py)/P¢
P, /P,
(1), j=0,1,2,...
(Px/r.)), j=0,1,2,...

perature and the system displays a first-order phase transition We
at the temperatur&,=(In P)" 1. There is, of course, a well- which

recover the standard Ising model by settifg 1,
shifts the transition temperature Tg=o. However,

known proscription against first-order phase transitions inn the limit of infinite temperaturey as defined approaches 1,
one-dimensional systems, but since this system only displaysnd the transition would not be observed. Therefore, to see
the transition in the limity—0, there is no violation of the the transition wherP=1, we would need to make the cou-
theorem. Nevertheless, whgiis near but distinct from 0, the pling constant proportional td. Then it would occur at the
transition is abrupt but not discontinuous. Figures 1-3 diszero of reciprocal temperature, at the switch from large posi-

play the temperature dependence of the populations dive to

large negative temperatures.

1-spins and clusters, of the energy and entropy, and of the The spatial correlationéo(0)a(j)) are the probabilities

heat capacitygE/JT, calculated withm=5 andP=2, for
which Ty~ 1.44.

that spins 0 ang are simultaneously in state 1. The differ-
ence (a(0)o(j))—(o)? proves to be proportional to

(r_/r,)'=exp(=j/l), for the correlation lengtl defined as

1.0
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o
S
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FIG. 1. Densities of 1-spindq;) and of clusters®.). The scale s
for P, is expanded 40-fold relative to that fét,. Symbols are 1.0
simulation results; curves are calculated according to formulas i
Table I. In this and all subsequent figures, energy units are such th
the energy difference between 0- and 1-spins is 1 and temperature
units are such that Boltzmann’s constant is 1. FIG
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FIG. 3. Heat capacity per spin as a function of temperature. FIG. 4. Mean lengths of clusters and gaps. Symbols are simula-

) ) ) tion results; curves are calculated according to formulas in Table I.
in Table I. NearTy, I'is ~1/(2y), so that with strong cou- | engths are measured relative to the lattice spacing of the model.
pling, correlations become long-ranged. This heterogeneity

1S, 1|_nhpart, respor|13|bltehfor fglassy ber&av:or,tas we Sh?}” S€€of any given cluster performs a biased random walk, with
_ /e average 1engins of gaps and clusters are snown | eps to the left and right occurring with relative weigRts

F_lg. 4. Gaps and clusters dominate, re_:spectlvely, at low an d 1, respectively. At temperatur@s-T,, the bias is to-

high temperatures. Also, as observed in Table I, clusters a ard the left @x>1), the gaps are narrow and tend to

gaps have Poisson length distributions. shrink spontaneously so that the clusters have relatively short
lifetimes; and we need not wait long to see any given cluster
lIl. DYNAMICAL PROPERTIES guenched by a cluster to its right. At temperatuTesT,,

We consider the dynamics of the model in discrete timethe bias is towards the righbk<1), the gaps have a broad

with Metropolis sampling. The fundamental dynamical pro_Poisson Iength distribution, "’F”d any given cIuster can have a
cess is single-spin flipping, but certain transitions very long lifetime as we wait for the cluster at its right to
000..<5>.. .010... and ...100s ' 110... are forbidden. The 'grow and quench it. Cluster lifetimes are distributed broadly

first constraint prevents the spontaneous appearance or d@.@d increase on average with falling temperature. This ex-
appearance of an isolated 1-spin; in other words, a cluster of

length one. The second constraint prevents movement of the TABLE Il. The model evolves dynamically via single spin flips
right boundary of a cluster. Table Il summarizes the dynami-With Metropolis bias, but with certain forbidden flips. A single spin
cal process. Although the right boundary of any given clustefi is selected at random. The second column gives the probability
is pinned, the left boundary moves via the processwith which o flips and is a function of the spin states of the two
001 s ’ 011.. . Furthermore. clusters are created and der]eighboring spins. The system clock then advances by the amount

S - - . 1/N, for N the total number of spins. He@=(P+1) 1. (These
stroyed by the division or the union of existing clusters viag o ition probabilities are only valid when0.5)
the process ...101«...111....

Obviously, any possible arrangement of clusters and gapgiia configuration

can be generated from any other arrangement: We permitthe ;| Ty Tjanen. Transition probability
left boundary of all clusters to move through repetitions of

the process ...001-...011... until all gaps have length 1, ..000... 0

then fill these gaps through the process ...164...111.... ..010.. 0

We can then work in reverse to generate any new configura- ...100 ... 0

tion. The only inaccessible state is the chain of all 0's. Soto ...110 .. 0
rigorously satisfy ergodicity, we exclude this state from the ..001 ... QPx
ensemble. As mentioned above, in the thermodynamic limit .. o011 .. Q

this omission is only significant in a vanishingly small inter- 101 .. QP

val near absolute zero. 111 .. Qy%/x

As a result of the process ...00%.....011..., the left edge
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log (0 log 14 (1)

FIG. 5. Simulation data for the time correlation function(t) FIG. 6. Simulation data for the time correlation function(t)
over a range of temperatures between 1.3 andT=2. Symbols  Over a range of temperatures betweéen 1.3 andT=2. Symbols
are the simulation data; solid curves are the best-fit stretchec®'® the simulation data; solid curves are the bestfit stretched-
exponential functions. Time units in this and subsequent figures ar@xPonential functions.
such thatN attempted spin-flips represent one unit of time.
by linear regression of [r-In U,(t)] vs Int (but using only
plains the glassy behavior of the system. those values for which 0.<1UX(t_)<0.9). Figwes 5 and 6
We define variables; such thatr;=1 if and only if o; display the two relaxation fun_ctlons at a series of tempera-
=1 andoj,,=0; in all other cases;=0. Ther;’s label the ~ tures. The stretched-exponential function provides a good fit
right edges of all the clusters, and are convenient dynamicdpPr bothU . andU,, at high temperatures, but only of; at
markers for the clusters: The period of time over which aall temperaturesU , probes the lifetime of individual clus-
spin hasr state of 1 is precisely the life-span of the associ-ters, its relaxation timetg,, can be construed as the cluster
ated cluster. lifetime. U, on the other hand, probes the flipping motion
We consider two correlation functions: of individual spins, and at low temperatures two separate
relaxations become resolvable. The faster relaxation arises
UT(t):{<Tj(O)Tj(t)>—<Tj>2}/{<7']?‘>—<7'j>2}, (5)  from the fluctuating motion of individual clusters as they
grow and shrink, while the slower relaxation arises from the
U, () ={(o;(0)oj()) —(a)?}{(a?)—(o;)?}, (6)  creation and annihilation of clusters. This faster relaxation is
suggestive of ther relaxation in real liquids. Interestingly,
wherer;(0), 7(t), oj(0), ando(t) are the values of; and  the separation into two time scales appears at the temperature
o; at times 0 and, respectively. We have estimated theseT,. Further study of theJ,, function is obviously needed,
correlation functions by computer simulation. A number ofwhile for now we examine only .. Figures 7 and 8 display
trajectories, each of length 4@ime steps, were generated at the temperature dependence of the stretched-exponential pa-
a series of temperatures, using the val@es2, m=5, and rameterstg, and 8, characterizindJ .. The parametety,,
N=1000. With P=2, we haveT,~1.44. For simple spin representing the cluster lifetime, varies with temperature ac-
systems such as these, an initial random configuration can m®rding to the empirical Vogel law,
obtained easily from the transfer matrix using Meirovich’s
scanning techniqugl0], which is rigorous as long as the full tr,=AexdB/(T—Ty)] (8
system is scanned. Therefore, annealing to achieve equilib-
rium is not necessaryJ ,(t) andU .(t) were calculated by with A=4.63, B=1.74, and T,=1.165. The stretched-
direct sampling along each trajectory at a serie$ wdlues exponential indexs, decreases slowly with decreasifcat
with approximately uniform logarithmic spacing and at a se-temperature3 >T,, and much more rapidly as we pass be-
ries of different temperatures. The values obtained at eaclow T=T,. The relaxations of many physical phenomena
temperature were then fitted to the stretched-exponential rexre well represented by the stretched-exponential function,
laxation function with relaxation times following the Vogel law. Furthermgse
is usually observed to decrease with decreasing temperature.
exd — (t/tg)”] (7)  In fact, examples are known in which the rate of decrease of
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FIG. 7. Relaxation timég, as a function of temperature. Sym- FIG. 8. Stretched-exponential indg. as a function of tem-

bols are the simulation data; solid curve displays the best-fit Vogeperature.

function. The vertical dashed line gives the value of the Vogel tem-

perature. not exhibit the strong peaks displayed in Fig. 3. However, it
should be remembered that the glass transition is a configu-

B changes dramatically in qualitative agreement with Fig. &ational effect. This model is construed only to represent the

[11]. We note that the glass transition temperature, defined a$nfigurational contribution to the heat capacity. We can ex-

the point at which the Vogel law appears to divergeTis  pect any such peaks in real systems to be significantly

~1.16, substantially lower than the transition temperatureyashed out by vibrational contributions. Furthermore, the

To~1.44. fact that the system eventually leaves equilibrium upon cool-

. . . 6 .
;Mt Tr—l.rB,Vthe trelzxatlﬁn tl?]et?xﬁ?rgi 1(?n(ijmth||stiterr:1-A ing means that the measured heat capacity will not exhibit a
beraiure proves to be the practica of sImulation. AS oy as strong as that shown in Fig. 3.

. . . pe
many trajectories as needed were run to bring the sampllnB Let us summarize the features of the model that lead to

error in U, and U, within acceptable bounds, but this re- | behavior. First latively | i tant
quires many more trajectories at lower temperatufds.T glassy benavior. Frst, a relatively farge coupling: constan
=1.3, about 1000 independent trajectories were neede ;_romotes_lnhomogenelty. Second, because the clusters have
about 400 at each of the temperatures 1.31 and 1.32; 10g9Ner spin entropies than the gaisP vs 0), the tempera-
300 when 1.35T<1.44; and 20—50 when 1.44T.) ture To=1/In P marks a transition from cluster dominance to
gap dominance. The combination of these two effects pro-
duces highly nonlinear behavior négg. And third, the two
dynamical constraints, suppression of spontaneous cluster
This model reproduces all of the following empirical creation and annihilation and the pinning of clusters by not
properties of glass-forming liquid$1l) The energy and en- permitting their right boundaries to move, produce glassy
tropy fall off rapidly upon coolingsee Fig. 2, in agreement dynamics, since cluster quenching can only occur when two
with the behavior often referred to as the Kauzmann paradoxlusters merge. The process of cluster formation and destruc-
(2) The temperature dependence of the relaxation time foltion spreads out over a broad range of times because the gap
lows the Vogel law.(3) The spectrum of relaxation times distribution is broad.
broadens upon cooling in agreement with the stretched- One question concerns the generalization of this model to
exponential law(4) Spatially heterogeneous dynamics, i.e., higher dimensions, since higher-dimensional Ising models
coexisting domains of, respectively, fast and slow relaxationdisplay richer phase behavior. However, the relevant transi-
present at equilibrium and which constantly move about, aréion occurs at infinite temperature in the standard model, and
observed. A fifth property, two separate time scales at lowvould seemingly be unaffected by, for example, the Ising
temperatures, displayed in thé, correlation function and critical point. We are currently studying the behavior of this
suggestive of the empirical relaxation, can also be cited, model in higher dimensions.
but further study of the temperature dependence of these two Assuming that some generalization of this model can be
time scales is needed. applied in higher dimensions, we can then ask what the
It might be argued that the empirical heat capacities danodel teaches us about supercooled liquids. The model sug-

IV. DISCUSSION AND CONCLUSIONS
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gests several assumptions about real liquids, which we diswhat gives rise both to the stretched-exponential relaxation
cuss in the following. and to the Vogel temperature dependence.

(1) Supercooled liquids possess two separate “phases.” Itis obviously too early to insist that this model represents
This model suggests that supercooled liquids exhibit twahe actual behavior of real liquids. It may be that the model
separate equilibrium “phases”; an “ideal” liquid and an captures all the essential phase space properties of true lig-
“ideal” glass phase, analogous, respectively, to the clustersiids without insisting that real liquids satisfy the three con-
and gaps of the model. We enclose the term “phases” inditions listed above. A better understanding of the effect of
guotes because they are not true macroscopic phases; clustdimensionality, as previously mentioned, will probably bear
and gaps have a finite average size and at macroscopic length this question. In any case, additional work is needed to
scales the system is uniform. In liquids, the two phases apdnderstand exactly the relationship between this model and
parently are structurally similar, both being disordered packactual liquids.
ings, although the ideal glass is less energetic and less de- For many supercooled liquids, the temperatUrg$in Eq.
generate than the liquid. The clusters represent regions @8)] and T (the temperature at which the extrapolated en-
high internal mobility, since each 1-spin is actually in one oftropy, Fig. 2, appears to vanishre nearly the same. For the
P different degenerate states. model presented here, they are, respectively, 1.16 and about

(2) Liquid domains at their minimum size have relatively 1.3. Neither the reasons for nor the significance of this dif-
low entropy but high energyrhe smallest cluster is a single ference is understood at present.
1-spin, and has entropy P>0 and energy &>1. The Another area of study is the effect of the degeneracy term
model therefore suggests that in real liquids, for whateveP on the model. In this work we have only studied the dy-
reason, the smallest liquid domains have high energies anthmics of the model giveR=2. As suggested by a referee,
low entropies, in the sense that their energies and entropiehanges irP might change the fragility of the system.
are much larger than and comparable to, respectively, that Additional work is also needed to understand the relation-
which would be expected based solely on the bulk energghip between this model and other models of glassy behav-
and entropy, respectively, of the phase. ior, most notably, mode-coupling theofy]. One feature of

(3) Ideal liquid and ideal glass domains may grow and mode-coupling theory is the “crossover temperaturg,’,
shrink at the expense of one another, but liquid domaingonsiderably above the empirical glass transition tempera-
cannot spontaneously disappear; they must be quenched lyre, which marks a transition from normal liquid to glassy
another domainThe dynamics of the model has been con-behavior. The temperatuiig, plays a very similar role in the
strained to forbid a cluster from spontaneously disappearingzurrent model.

In order to quench a liquid domain, another domain must

grow and coalesce with it. At low temperatures, this is a rare ACKNOWLEDGMENT

occurrence, since the equilibrium concentration of domains

is small. This also produces a broad spectrum of quenching The author acknowledges a number of helpful discussions
times for liquid domains, since the gaps between domainwith Dr. Jack F. Douglas of the National Institute of Stan-
obey a Poisson distribution. Therefore, this assumption islards and Technology.
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